Model Checking Tap Withdrawal in C. Elegans
نویسندگان
چکیده
We present what we believe to be the first formal verification of a biologically realistic (nonlinear ODE) model of a neural circuit in a multicellular organism: Tap Withdrawal (TW) in C. Elegans, the common roundworm. TW is a reflexive behavior exhibited by C. Elegans in response to vibrating the surface on which it is moving; the neural circuit underlying this response is the subject of this investigation. Specifically, we perform reachability analysis on the TW circuit model of Wicks et al. (1996), which enables us to estimate key circuit parameters. Underlying our approach is the use of Fan and Mitra’s recently developed technique for automatically computing local discrepancy (convergence and divergence rates) of general nonlinear systems. We show that the results we obtain are in agreement with the experimental results of Wicks et al. (1995). As opposed to the fixed parameters found in most biological models, which can only produce the predominant behavior, our techniques characterize ranges of parameters that produce (and do not produce) all three observed behaviors: reversal of movement, acceleration, and lack of response.
منابع مشابه
Integration of mechanosensory stimuli in Caenorhabditis elegans.
The tap withdrawal reflex in Caenorhabditis elegans demonstrates various forms of nonassociative learning. A first step in determining the cellular mechanisms of this learning is to identify the neuronal circuitry that underlies this reflex. Studies by Chalfie et al. (1985) have defined the touch-circuit that mediates the response to a stimulus related to tap--a light touch. We used the touch c...
متن کاملA dynamic network simulation of the nematode tap withdrawal circuit: predictions concerning synaptic function using behavioral criteria.
The nematode tap withdrawal reflex demonstrates several forms of behavioral plasticity. Although the neural connectivity that supports this behavior is identified (Integration of mechanosensory stimuli in Caenorhabditis elegans, Wicks and Rankin, 1995, J Neurosci 15:2434-2444), the neurotransmitter phenotypes, and hence whether the synapses in the circuit are excitatory or inhibitory, remain un...
متن کاملMutations of the caenorhabditis elegans brain-specific inorganic phosphate transporter eat-4 affect habituation of the tap-withdrawal response without affecting the response itself.
The studies reported here were designed to investigate the role of the mutation eat-4 in the response to tap and in habituation in the nematode Caenorhabditis elegans. In C. elegans eat-4 has been found to affect a number of glutamatergic pathways. It has been hypothesized to positively regulate glutaminase activity and therefore glutamatergic neurotransmission. In the eat-4(ky5) loss-of-functi...
متن کاملFormal Methods for Biological Systems: Languages, Algorithms, and Applications
As biomedical research advances into more complicated systems, there is an increasing need to model and analyze these systems to better understand them. Formal specification and analyzing methods, such as model checking techniques, hold great promise in helping further discovery and innovation for complicated biochemical systems. Models can be tested and adapted inexpensively in-silico providin...
متن کاملNeuronal Circuit Policies
We propose an effective way to create interpretable control agents, by re-purposing the function of a biological neural circuit model, to govern simulated and real world reinforcement learning (RL) test-beds. We model the tap-withdrawal (TW) neural circuit of the nematode, C. elegans, a circuit responsible for the worm’s reflexive response to external mechanical touch stimulations, and learn it...
متن کامل